
Preamble:
This document represents the opinions of Canadian metabolic and genetic physicians who provide comprehensive medical care for individuals suffering from Morquio A syndrome. This document is not intended to provide complete management and treatment guidelines for Morquio A syndrome but rather afford an opinion on the role of elosulfase alfa in the management of this rare disorder within the context of the Canadian health care environment. The opinions are based on review of elosulfase alfa clinical trial data submitted to the US FDA, published Morquio natural history data as well as personal experience in the management of Morquio A syndrome patients. BioMarin facilitated this process by presenting clinical trial data and supporting information (prior to publication) used during the November 2013 US FDA submission and review of elosulfase alfa. BioMarin had no role in the formulation or phrasing of this opinion piece. Elosulfase alpha has been approved for use by the U.S. Food and Drug Administration, FDA, Feb 2014 and the European Commission, April 2014.

Disease Characteristics:

i) Incidence: Morquio A Syndrome (OMIM #253000) is a rare autosomal recessive lysosomal storage disorder caused by deficiency of the lysosomal hydrolase, N-acetylgalactosamine-6-sulfatase. Deficiency results in the accumulation of the glycosaminoglycans (GAGs) keratan sulfate and chondroitin-sulfate resulting in a progressive multisystem disease. The disease is extremely rare with incidence rates ranging from 0.48/100,000 in British Columbia (Applegarth, Toone, & Lowry, 2000), 0.16/100,000 in Australia (Meikle, Hopwood, Clague, & Carey, 1999) and 0.22/100,000 in Portugal (Pinto et al., 2004). Based on British Columbia incidence data, approximately 1.8 new cases of Morquio A would be born annually in Canada.

ii) Clinical features: Morquio A syndrome is a clinically heterogeneous progressive multisystem disease characterized by profound skeletal and joint manifestations as well as non-skeletal manifestations which include: corneal clouding, hearing loss, complex respiratory disease as well as cardiac disease. Unlike other MPSs, cognitive impairment is not associated with Morquio syndrome. Although clinically heterogeneous, patients can be broadly classified into early onset “classical” disease and later onset disease. The majority of patients, ~75%, fit a “classical” disease phenotype. The natural history of Morquio A disease is well characterized through detailed observational studies of over 350 patients from the International Morquio Registry (Hendriksz et al., 2013; Montaño, Tomatsu, Gottesman, Smith, & Orii, 2007; Tomatsu et al., 2011) as well as the industry sponsored MorCap study (Harmatz et al., 2013); many patients are represented in both of these observational studies. Pertinent observations from these observational studies are:

Classical patients present within the first 5 years of life with short stature and other orthopedic symptoms including genu valgum, kyphosis, abnormal gait and pectus carinatum. After 18 months of age, linear growth is impaired with growth cessation by the age of 8 years. Final height in classical patients is below 120 cm i.e. approximately -8.5 SD as compared to age and sex matched controls. Surgical interventions are common; >70% of patients in the registry required surgery, with many patients requiring multiple surgeries by the early teenage years. Surgeries
include; adenoidectomy, ear tube insertion, tonsillectomy, epiphyseal surgery, hip replacement, osteotomy, spinal decompression and spinal fusion. Published longevity data available demonstrate that classical patients die within the 2nd to 3rd decade usually secondary to progressive cardio-pulmonary compromise (Lavery & Hendriksz, 2014). The natural history of disease is characterized by progressive impairment of mobility and endurance secondary to skeletal and joint disease with associated joint pain as well as pulmonary and cardiac disease. Progressive upper airway and pulmonary disease contributes to decreased endurance and fatigue as well as significant anesthetic risk. Complex respiratory symptoms often results in a requirement for CPAP, BiPAP or tracheotomy. Additional morbidity results from hearing loss and corneal clouding; intelligence is not affected in this disorder. Mobility aides including walkers and motorized wheel chairs are required by most patients by the second decade of life. Spinal cord compromise ranging from paraplegia to quadriplegia compounds mobility challenges in many patients.

Late onset patients: This group of patients represents a very heterogeneous subgroup of Morquio A patients and are best categorized as fitting a wide disease spectrum. Initial presentation can range from 3 to 5 years of age to well into late childhood. Progressive bone deformity, short stature and abnormal gait are the most common presenting features of disease. The rate of disease progression is highly variable in this group of patients with longevity extending to the normal range. Later onset patients experience similar skeletal and non-skeletal morbidities as experienced in classical patients but at a later age and show a slower disease progression rate.

Summary of disease impact: Despite the rarity of Morquio A there is robust natural history/observational data for this disorder. These data indicate that the majority of patients experience significant and profound multisystem progressive morbidity beginning in early childhood. These morbidities significantly impact mobility and lead to the requirement for continued medical and surgical interventions. Despite these interventions, quality of life and life expectancy are severely impaired (Hendriksz et al., 2014b). Endurance is impaired early in this disorder as reflected by performance in the 6-minute walk test (6-MWT) at baseline in the MorCap study (fig 1). The data in figure 1 represents baseline cohort subgroup data for 316 Morquio A patients who participated in the MorCap study and thus does not represent longitudinal data. The 6-MWT indicates a profound early impact of this disease on endurance with affected patients performing 75% less than age-matched controls. MorCap data also reveals significant early pulmonary disease in Morquio A patients (Table 1). Standardization of respiratory function measures in Morquio A patients is problematic as the disease significantly impacts height, weight and chest configuration thus comparison to “predicted” measures are not relevant. Never the less, for patients less than and greater than 18 years of age there is profound reduction in lung volumes in addition to a reduced ability to carry out the work of breathing. The latter is reflected by the severe impairment of maximum voluntary ventilation (MVV) seen in all age groups. Normal MVV for adults is considered to be 80-180 L with values less than 70 L for females and less than 130 L for males is considered clinically significant. Note the median MVV of adult Morquio patients is 31.5 L. In addition to the direct impact of this disease on the affected individual, there is considerable social impact related to the requirement for parental involvement and support for activities of daily living for the affected individual. As such there are broader social and economic impacts of this rare disease.
Clinical Trial Data: Elosulfase alfa is the first drug available that targets the primary metabolic defect underlying Morquio A. Efficacy of eolsulfase alfa in the treatment of Morquio A syndrome was assessed through a phase 3 multinational, randomized, placebo-controlled trial (Hendriksz et al., 2014a). The primary endpoint measure used was improved endurance as demonstrated by the 6-MWT. This phase 3 trial involved 176 patients treated for a 24 week period randomized equally into three treatment arms; placebo, eolsulfase alfa 2 mg/kg/wk and eolsulfase alfa 2 mg/kg/qow. Patients were stratified into the following age categories; 5-11 yrs., 12-18 yrs., >19 yrs as well as baseline 6-MWT; ≤200 meters, > 200 meters. Secondary endpoints included; 3-minute stair climb, urine KS, tertiary endpoints included pulmonary function tests.

Compliance in the study was excellent with 175 of the 176 dosed patients completing the study; an additional patient withdrew prior to dosing. A statistically significant difference was seen in the primary endpoint (6-MWT) for patients receiving eolsulfase alfa at the dose of 2 mg/kg/wk as compared to controls. The mean difference was 22.5 meters after 24 weeks in the weekly treated group, p <0.0174 (figure 2). No significant difference was seen at the dose of 2 mg/kg/qow. The 6-MWT results are of a similar magnitude to that seen in ERT clinical trials for MPS I and MPS II. 6-MWT data for 45 MPS I patients in the laronidase phase 3 trial showed a mean difference of 38.1 meters between treated and placebo patients after 24 weeks, p=0.039 (Wraith et al., 2004). A longer treatment duration of 53 weeks in the idursulfase phase 2/3 phase trial of 96 MPS II patients resulted in a mean difference in the 6MWT of 37 meters between weekly treated and placebo patients, p=0.01 (Muenzer et al., 2006).

15% of patients in the weekly treated eolsulfase alfa arm had a >100-meter improvement with over 50% having an improvement of > 20-meters. Interestingly, the superior performance in the 6-MWT for the weekly treated patients was apparent at all levels of response (figure 3). As expected, urine KS decreased significantly in treated patients whereas the other secondary endpoint, 3-minute stair climb showed no significant change. Change in pulmonary function measures (MVV and FVC) showed a trend to improvement in treated patients over 24 weeks but did not reach statistical significance (figure 4 A, B).

Safety data from 6 clinical trials involving 235 patients indicate that approximately 19% of patients who received eolsulfase alfa experienced hypersensitivity reactions with 8% of reactions classified as anaphylaxis. Reactions responded to standard management with all patients able to continue to receive drug. No evidence of reduced efficacy has been identified in patients experiencing hypersensitivity reactions.

Opinion statements:

a) Morquio A is a progressive multisystem disease with profound impact on quality of life for affected individuals and their family. Management requires the involvement of a multidisciplinary team with particular involvement of the following specialties; medical genetics/biochemical genetics, orthopedic surgery, neurosurgery, respiratory medicine, ENT and ophthalmology. Anticipatory guidance related to potential disease complications with a plan for early intervention, affords the best long-term outcome for patients. Elosulfase alfa is the only
biologic directed to the primary metabolic block in Morquio syndrome, other than symptom management there are no alternative treatments for this disorder.

b) There are considerable unmet medical needs for Morquio patients as the current symptom based approach to the treatment of this complex progressive multisystem disorder has marginal impact on life expectancy. Despite a symptom-based management approach, classically affected patients show progressive decline in mobility and endurance leading to mobility aids/wheel chair requirement in late childhood. In addition, progressive cardio-respiratory compromise leads to significant anesthetic risks and ultimate death by the 2nd-3rd decade. As such affected individuals have significant unmet medical needs

c) A 24-week double blind placebo controlled trial of elosulfase alfa in 175 patients with Morquio A demonstrated a significant increase (22.5 meters) in 6-MW in patients receiving elosulfase alfa at a dose of 2 mgs/kg/week as well as reduction in urinary KS excretion. Respiratory measures show a trend for improvement in treated patients. Although the available clinical trial data does not allow for direct evaluation of the long-term impact of elosulfase alfa use, the fact that weekly elosulfase alfa dosing resulted in a clinically meaningful effect warrants the consideration of elosulfase alfa use in the management of Morquio A patients.

d) \textbf{Treatment Initiation and Treatment Goals:} In light of the relentless and predictively progressive course of Morquio A syndrome, treatment should be initiated as early in the clinical course as possible. The clinical heterogeneity of Morquio A syndrome compounded with the variable time point in the disease natural history when individual patients are diagnosed warrants that elosulfase alfa use in individual patients should be paired with personalized, measureable (q 6 months) and clinically significant treatment goals. \textbf{Treatment goals should take into consideration the burden of disease at the time of treatment initiation and the anticipated benefits over a defined period of time.}

Baseline assessments should include:
- i) Skeletal survey
- ii) Spinal MRI
- iii) Mobility measure: 6MWT or stair climb
- iv) Respiratory function testing including sleep study
- v) Age appropriate quality of life measure
- vi) Requirement for mobility aides
- v) Requirement for respiratory aides
- v) Ophthalmologic and ENT assessment
- vi) Urine KS determination
- vii) Morquio A gene mutation analysis

Treatment goals for a individual patient should be established by a multidisciplinary team and should be dependent on where in the natural history of disease the patient is determined to best fit. It that regard, specific treatment goals should be based on disease/functional stabilization and/or prevention of symptom onset. The expected time to reach treatment goals should be in the 1 to 2 year time interval and new or additional treatment goals should be established therein.
Discussions of drug safety, impact of infusion schedules and the strict requirement for participation in frequent monitoring through specialized clinics needs to be discussed with each patient and their families.

Discontinuation of elosulfase alfa should be considered if treatment goals are not reached, if patient does not comply with infusions or clinical monitoring of treatment goals.

Authors

Lorne A. Clarke MD, CM FRCPC, FCCMG
Professor Medical Genetics
Head Genetics and Health Research Cluster
Child and Family Research Institute
University of British Columbia

Bruno Maranda MSc, MD, FRCPC, FCCMG
Director, Genetics division, CHUS
Université de Sherbrooke

John Mitchell, MSc., M.D., FRCPC
Associate Professor, Department of Pediatrics
Director, Division of Pediatric Endocrinology
Montreal Children's Hospital, McGill University Health Center

Julian AJ Raiman MB BS MSc MRCP(UK)
Staff Physician, Division of Clinical & Metabolic Genetics
Hospital for Sick Children
Assistant Professor, Department of Pediatrics, University of Toronto

Cheryl Rockman-Greenberg MD, CM, FRCPC, FCCMG
Professor and Head, Department of Pediatrics and Child Health
College of Medicine, Faculty of Health Sciences
Medical Director, Child Health Programme, WRHA

Sandra Sirrs MD, FRCPC
Medical Director, Adult Metabolic Diseases Clinic,
Clinical Associate Professor, University of British Columbia

Rebecca Sparkes, MD, FRCPC, FCCMG
Medical Geneticist
Inherited Metabolic Disorders Clinic
Alberta Children's Hospital

Sylvia Stockler MD, PhD, MBA, FRCPC
Professor Pediatrics, Department Pediatrics, UBC
Head Division Biochemical Diseases, BCCH
References

Enzyme replacement therapy for mucopolysaccharidosis I: a randomized, double-blinded, placebo-controlled, multinational study of recombinant human alpha-L-iduronidase (laronidase).
Figure 1 Progressive decline in endurance over time

![Progressive decline in endurance over time](image)

- **Unaffected population**
- **MorCAP baseline**

a Adapted from Geiger et al, study provides reference values for 6MWT based on and limited to demographics for 528 healthy children and adolescents ages 3 to 18.

b Baseline data for MorCAP, a multicenter, multinational, cross-sectional longitudinal study of 325 patients with Morquio A.
Figure 2 Phase 3 primary endpoint measure (6MWT)

![Phase 3 primary endpoint measure (6MWT)](image)

Placebo
- Baseline: 59
- Week 12: 59
- Week 24: 59

Elosulfase alfa 2 mg/kg/wk
- Baseline: 58
- Week 12: 58
- Week 24: 57

Elosulfase alfa 2 mg/kg/qow
- Baseline: 59
- Week 12: 59
- Week 24: 58

P = 0.0174
Figure 3 Distribution of change in 6 MWT from baseline to 24 weeks.
A) MVV

![Graph showing Mean percent change from baseline in MVV](image)

Placebo (n) 59
Elosulfase alfa 2 mg/kg/wk (n) 58
Elosulfase alfa 2 mg/kg/qow (n) 59

Placebo Elosulfase alfa 2mg/kg/wk

Elosulfase alfa 2mg/kg/qow

Baseline Week 24

LS mean change from baseline (%)

LS mean difference: 3.3

95% CI: (-3.1, 9.6)

P=0.304

B) FVC

![Graph showing Mean percent change from baseline in FVC](image)

Placebo (n) 59
Elosulfase alfa 2 mg/kg/wk (n) 58
Elosulfase alfa 2 mg/kg/qow (n) 59

Placebo Elosulfase alfa 2mg/kg/wk

Elosulfase alfa 2mg/kg/qow

Baseline Week 24

LS mean change from baseline (%)

LS mean difference: 3.3

95% CI: (-3.1, 9.6)

P=0.304
Table 1: Pulmonary function in Morquio A patients: from (Harmatz et al., 2013)

<table>
<thead>
<tr>
<th></th>
<th>FVC</th>
<th></th>
<th>MVV</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><18 years</td>
<td>>18 years</td>
<td><18 years</td>
<td>>18 years</td>
</tr>
<tr>
<td>N</td>
<td>195</td>
<td>66</td>
<td>178</td>
<td>59</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>1.1 (0.7)</td>
<td>1.5 (1.1)</td>
<td>32.4 (22.1)</td>
<td>42.1 (32.8)</td>
</tr>
<tr>
<td>Median</td>
<td>0.9</td>
<td>1.00</td>
<td>25.5</td>
<td>31.5</td>
</tr>
<tr>
<td>Min, Max</td>
<td>0.2, 4.5</td>
<td>0.3, 0.5</td>
<td>1.3, 119.0</td>
<td>6.3, 160.0</td>
</tr>
</tbody>
</table>